
Computer Organization and Architecture: A Pedagogical Aspect	
Prof. Jatindra Kr. Deka	

Dr. Santosh Biswas	
Dr. Arnab Sarkar 

Department of Computer Science & Engineering 
Indian Institute of Technology, Guwahati 

 
Lecture – 35 

Summary of Memory Sub-system Organization 
 

(Refer Slide Time: 00:26)	

 

Here we will summarize our discussion with Virtual Memory. Virtual memory may be 

described as the level of memory hierarchy that manages caching between the main 

memory and disk. Therefore, it allows main memory to act as a cache for the disk. It 

provides; virtual memories provide address translation from virtual address, used by a 

program to the physical address space used to access memory. It allows a single program 

to expand it’s address space beyond the limits of the main memory. 

So, through this address translation because it allows the translation of virtual memory 

addresses to physical memory addresses through this scheme it allows a single program 

to expand it is address space beyond the limits of the main memory. It allows main 

memory to be shared among multiple active processes in a protected manner. How do 

you give this protection? It prevents this protection is given by preventing user programs 

from tampering with page tables so that only the OS can change virtual to physical 

1030



address translations. So, this is how you stop one program from accessing data of another 

program; although, multiple programs are sharing the same physical memory. However, 

it also allows controlled sharing of pages between different programs. 

How? Controlled sharing is implemented with the help of OS and access bits in the page 

table that indicate whether a program has read or write access to a page, ok. So, if we can 

share a page between multiple programs through this access bits with the help of the OS. 

This virtual memory which we have described as the caching memory between the main 

memory and disk, this caching mechanism between main memory and disk is 

challenging because the cost of page faults is very high. If you have a miss in the main 

memory you have to go to physical memory. And we saw that this could be very high up 

to 100s of times slower, 1000s of times slower than accessing the main memory. So, the 

cost of page faults is very high.	

(Refer Slide Time: 02:52)	

 

So, we need techniques towards reducing the miss penalty. So, we don’t want to go into 

the disk. So, we have to have techniques, we have to have techniques that reduce chances 

of going to the disk.	

We use large page tables to take advantage of the spatial locality. Because misses in the 

main memory has a high penalty, we need to have techniques to reduce such miss 

1031



penalty. So, what are these techniques? We use large pages to take advantage of spatial 

locality and reduce miss rates. So, page sizes are of the order of 4 kb 8 kb or even larger. 

Mapping between virtual addresses to physical addresses is made fully associative so 

that a page can potentially be mapped to any large into to any page frame. So, I can I 

should be able to put my page potentially into any page frame in main memory. A 

program can potentially put it’s page into any page frame in main memory that is the 

main memory map this mapping is fully associative. And why it is does why does this 

fully associativity work here, because the misses the locality is higher and the misses are 

much more rare.	

Use of efficient page replacement algorithms must be used, such as the second chance 

page page replacement which approximates LRU by using FIFO along with the reference 

bit. Writes into the disk are very expensive. So, we use a write back mechanism instead 

of write through. So, this virtual memories use a write back mechanism a page is 

replaced. So, when I am writing to ah when I am writing into the main memory I don’t 

write into the disk. Only during replacement, I write back dirty page onto the disk, that is 

we I am we are using a write back scheme. 

So, use of dirty bit to avoid writing unchanged pages back to the disk. Even within this 

suppose when we have selected, we saw that when we select a certain set of pages to be 

written to and we have written it back to memory. If that page is accessed ah if so when 

that page is written to the memory and it is free to be replaced. It is brought into the pool 

of free pages, even then we check whether the dirty bit of this page is on or off if the 

dirty bit is off, that page even though it is in the free frame pool, I can just use it because 

it is now unchanged. If a processor had to access a page table resident in memory to 

translate every axis, caches would become completely ineffective. 

Now we said that page table is resident in memory. Now if I had to find out during or 

during an access when I am getting a page, if I had to go into the main memory to fetch 

the page table and get where from and get from where to get this page caches would 

become completely ineffective, because every access would ultimately require a memory 

access to access the page table. And therefore, use a virtual memory in that case would 

be very expensive.	

1032



That the TLB act acts as a cache for address translation from the page table. So, 

frequently accessed page table entries are therefore put in a TLB. Due to the use of the 

TLB to access the page table on every access, I don’t have to go to the main memory 

right, and this improves the performance heavily.	

(Refer Slide Time: 06:49)	

 

If a process routinely accesses more virtual memory than it has physical memory due to 

insufficient physical memory it suffers thrashing as we saw. What is thrashing? in 

thrashing it spends more time swapping pages in and out of memory then actual 

execution on the CPU. The set of popular pages corresponding to a program at a given 

time is called it is working set. The pages the set of pages that that a particular program 

has accessed in the recent past is there in the working set. So, it is the set of popular 

pages corresponding to a program at a given time and it is called the working set. So, 

thrashing will occur when this working set cannot be accommodated within the physical 

memory allocated to the program.	

To handle this situation, we can either have more we can allocate more physical 

memory, and to be to be made available to this process. So, I need to handle thrashing to 

reduce to reduce access, because I don’t have all pages in the working set in main 

memory, how can I improve the situation? I will have to increase memory that is 

1033



allocated to this program. The program must be temporal or if I cannot do this this 

program must be temporarily suspended in the interest of the rest of the system. 

So, I suspend this program, because this program is undergoing a lot of thrashing, and I 

will allow other processes to work smoothly. And it will be better, because the pages 

their page frames allocated to this process can be distributed among other processes in 

the process.	

When the situation improves and the disk usage lowers disk access is lowered then this 

process can again be brought and executed. The other way to reduce to improve this 

situation of thrashing to reduce thrashing is to have an algorithm to have better 

algorithms and data structures for the program so that the locality of this program can be 

improved. When the locality of the program is improved, effectively the working set size 

of the program number of distinct sets distinct pages in the working set. So, the working 

set size therefore reduces. When this happens when the locality is improved, and hence 

the program will be able to work with a lower amount of physical memory. 

So, these are the ways in which thrashing or thrashing can be reduced. With this we 

come to the end of this summarization on virtual memory. 

1034


